期刊专题

10.11897/SP.J.1016.2022.00098

基于异构特征聚合的局部视图扭曲型纸币识别

引用
如何识别同一物体的不同结构的表现形式,对于机器而言,是一个比较困难的识别工作.本文以易变形的纸币为例,提出了一种基于异构特征聚合的局部视图扭曲型纸币识别方法.首先利用灰度梯度共生矩阵、Haishoku算法和圆形LBP分别获得纹理风格、色谱风格和纹理,这些特征从不同的角度描述了局部纸币图像,然后通过VGG-16、ResNet-18和DenseNet-121网络学习这些不变形特征得到输出特征,将输出特征聚合后输入识别层Softmax,达到三模型融合效果,进而识别局部视图扭曲型纸币.实验结果表明,多特征聚合和不同类型模型融合可以最大可能地捕获图像的语义,在准确率、精度、召回率和F1上优于基于单特征和双特征的识别,且优于单类模型和两类模型融合的识别性能,此外,在准确率和时间复杂度等评价标准下,与已有主流方法相比都取得了相对较好的效果.

纸币识别;局部视图扭曲;不变形特征;特征聚合;模型融合

45

TP391(计算技术、计算机技术)

国家社会科学基金;北京市自然科学基金

2022-01-21(万方平台首次上网日期,不代表论文的发表时间)

共17页

98-114

暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

45

2022,45(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn