基于异构特征聚合的局部视图扭曲型纸币识别
如何识别同一物体的不同结构的表现形式,对于机器而言,是一个比较困难的识别工作.本文以易变形的纸币为例,提出了一种基于异构特征聚合的局部视图扭曲型纸币识别方法.首先利用灰度梯度共生矩阵、Haishoku算法和圆形LBP分别获得纹理风格、色谱风格和纹理,这些特征从不同的角度描述了局部纸币图像,然后通过VGG-16、ResNet-18和DenseNet-121网络学习这些不变形特征得到输出特征,将输出特征聚合后输入识别层Softmax,达到三模型融合效果,进而识别局部视图扭曲型纸币.实验结果表明,多特征聚合和不同类型模型融合可以最大可能地捕获图像的语义,在准确率、精度、召回率和F1上优于基于单特征和双特征的识别,且优于单类模型和两类模型融合的识别性能,此外,在准确率和时间复杂度等评价标准下,与已有主流方法相比都取得了相对较好的效果.
纸币识别;局部视图扭曲;不变形特征;特征聚合;模型融合
45
TP391(计算技术、计算机技术)
国家社会科学基金;北京市自然科学基金
2022-01-21(万方平台首次上网日期,不代表论文的发表时间)
共17页
98-114