期刊专题

10.11897/SP.J.1016.2021.00370

基于双通道R-FCN的图像篡改检测模型

引用
随着大数据时代的到来和图像编辑软件的发展,恶意篡改图片的数量出现井喷式增长,为了确保图像的真实性,众多学者基于深度学习和图像处理技术提出了多种图像篡改检测算法.然而,当前提出的绝大多数方法在面对大量图片的情况下,篡改检测速率较低且小面积篡改区域检测效果较差.为了有效解决这些问题,本文首次将基于区域的全卷积网络(Region-based Fully Convolutional Networks,R-FCN)引入双通道篡改检测网络,通过彩色图像通道提取图像的表层特征,使用隐写分析通道挖掘图像内部的统计特征,并利用双线性池化层将两个通道的信息融合,构建了一种面向实际应用场景的图像篡改检测模型.其中,利用R-FCN中位置敏感得分图提高图像篡改检测效率,使用双线性插值算法提高小面积篡改区域的检测率.通过在国际主流的标准图像篡改数据集上进行实验,有效地验证了该模型的图像篡改检测速率相比当前最新模型提高2.25倍,检测精度提升1.13%到3.21%,本文提出的模型是一种更加高效而精准的图像篡改检测模型.

图像篡改检测、深度学习、双通道网络、基于区域的全卷积网络、双线性插值

44

TP751;TP183(遥感技术)

本课题得到国家自然科学基金面上项目,重点项目;国网甘肃省电力公司电力科学研究院横向项目

2021-03-05(万方平台首次上网日期,不代表论文的发表时间)

共14页

370-383

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

44

2021,44(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn