基于ReliefF剪枝的多标记分类算法
多标记分类问题需要为每个实例分配多个标记.常见的多标记分类方法主要分为算法转换法和问题转换法两类.合理利用标记间的依赖关系是提升多标记分类性能的关键.在该文中,作者从不同的问题转化方法的角度,将标记间依赖关系的利用方法分为标记分组法和属性空间扩展法两种.作者发现,对于属性空间扩展法,普遍存在的难题在于如何对标记间的依赖关系进行准确度量,并选择合适的标记集合加入到属性空间中.在此基础上,作者提出了一种基于ReliefF剪枝的多标记分类算法(ReliefF based Stacking,RFS).算法从属性选择的角度,利用ReliefF方法对标记间的依赖关系进行度量,进而选择依赖关系较强的标记加入到原始属性空间中.在9个多标记基准数据集上的实验结果显示,RFS算法相较于当下流行的多标记分类算法具有较为明显的优势.
多标记分类、标记间依赖关系、属性选择、ReliefF、Stacking算法
42
TP301(计算技术、计算机技术)
国家自然科学基金61672086,61702030,61771058;北京市自然科学基金4182052
2019-06-11(万方平台首次上网日期,不代表论文的发表时间)
共14页
483-496