基于曲率分级的形状编码及识别方法
形状识别是计算机识别领域中的基本问题,可以广泛地应用于对象识别、图像检索、图像配准、目标追踪等各个领域.现在的形状识别方法主要利用形状轮廓上采样点的相关性形成特征描述子,在实际应用中由于缩放、旋转、仿射、射影等变换,无法获取采样点之间的对应关系,形状匹配时间长,识别率低.为了克服基本的特征描述子的局限性,该文提出了一种基于曲率分级的形状编码方法.首先,将射影不变量引入到形状的基本表示中,以保证形状描述在各种变换下的稳定性;其次,以形状轮廓段为基本编码单位,对基本的描述子进行聚类编码;最后,为了使编码结果更好地代表形状轮廓信息,作者采用一种对轮廓段曲率分级的方式,将不同曲率级别的编码用max_pooling的方式提取特征作为形状的最终编码.在通用数据库上的实验表明,该方法可以有效地识别在射影变换下的形状,识别率高达98%,较基本的特征描述子提高了近10%,与其它基于编码的方法相比也有一定的优势.
形状识别、射影变换、轮廓段、特征编码
41
TP391(计算技术、计算机技术)
国家自然科学基金61402077,61432003,61328206,11171052,61876030;教育部新世纪优秀人才支持计划NCET-11-0048
2018-12-18(万方平台首次上网日期,不代表论文的发表时间)
共14页
2453-2466