期刊专题

10.3724/SP.J.1016.2011.00204

一种基于人工免疫和代码相关性的计算机病毒特征提取方法

引用
现有的计算机病毒检测方法利用病毒特征码来检测病毒,已经不能适应病毒技术的发展,特别是其无法检测出病毒的新变种与未知病毒.受自然免疫系统的启发,该文提出了一种基于人工免疫的利用计算机病毒代码相关性的计算机病毒特征提取方法.这种特征提取方法在底层提取出与病毒相关的字节模式,在相对更高的层面上记录这些字节模式之间的共同作用信息,之后利用阴性选择算法提取出计算机病毒检测基因库,实现了对训练集上合法程序的完美记忆,从而保证了该文方法的误判率处于极低的水平.计算机病毒检测基因库在个体层上存储病毒样本,一个样本中储存了若干个不定长的基因,充分利用了同一个样本的不同基因代码之间的相关性.为了尽可能少地丢失有效信息,这种方法在基因层上对基因进行匹配,在个体层上对可疑程序进行分析,最终由整个计算机病毒检测基因库做出分类决策.实验表明:此方法对未知病毒的平均识别率达到94%,同时对合法程序的误判率保持在2%之内,具有较强的泛化能力,能够有效识别病毒伪装,检测出已知病毒的新变种,对未知病毒也具有较强的识别能力.

病毒检测、人工免疫、特征提取、代码相关性、连续一致匹配

34

TP18(自动化基础理论)

国家自然科学基金60673020,60875080;国家"八六三"高技术研究发展计划项目基金2007AA012453

2011-06-20(万方平台首次上网日期,不代表论文的发表时间)

共12页

204-215

暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

34

2011,34(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn