期刊专题

10.3724/SP.J.1016.2009.00251

从规划解中学习一阶派生谓词规则

引用
派生谓词是描述动作非直接效果的主要方式.但是由人类专家设计的派生谓词规则(即领域理论)不能保证总是正确或者完备的,因此有时很难解释一个观察到的规划解为什么是有效的.结合归纳学习与分析学习的优点,文中提出一种称为FODRL(First-Order Derived Rules Learning)的算法,在不完美的初始领域理论的引导下从观察到的规划解中学习一阶派生谓词规则.FODRL基于归纳学习算法FOIL(First-Order Inductive Learning),最主要的改进是可以使用派生谓词的激活集来扩大搜索步,从而提高学习到的规则的精确度.学习过程分为两个步骤:先从规划解中提取训练例,然后学习能够最好拟合训练例和初始领域理论的一阶规则集.在PSR和PROME-LA两个派生规划领域进行实验,结果表明,在大部分情况下FODRL比FOIL(甚至包括其变型算法FOCL)学习到的规则的精确度都要高.

人工智能、智能规划、派生谓词规则、归纳学习、激活集

33

TP182(自动化基础理论)

国家自然科学基金60173039;广东工业大学博士启动基金项目093032

2010-04-21(万方平台首次上网日期,不代表论文的发表时间)

共16页

251-266

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

33

2010,33(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn