期刊专题

10.3321/j.issn:0254-4164.2008.01.005

结合位点进化距离与支持向量机的蛋白质分类方法

引用
生物信息学的一个关键的研究课题是理解细胞的分子机制,这依赖于对基因所决定的每一条蛋白质的含义或者功能的理解.一般通过与一条或多条功能已知的蛋白质的相似性比较来推测未知蛋白质的功能,其中,基于支持向量机的一些算法取得了很好的成果.SVM-pairwise算法是当前最好的基于支持向量机的算法中的一个,该方法利用两条序列的相似性来将蛋白质序列转化为固定长度的向量.文中提出了一种新的利用支持向量机算法对蛋白质序列进行分类的方法,这种方法使用位点进化距离代替两条序列的比对得分,该方法比SVM-pairwise有着显著的改善,在蛋白质结构分类数据库(SCOP)上进行的实验表明,该方法具有比SVM-pairwise更好的分类性能.

生物信息学、内核、位点进化距离、支持向量机、蛋白质结构分类数据库

31

TP18(自动化基础理论)

国家自然科学基金60503060;90612019;60752001

2008-05-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

43-50

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

31

2008,31(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn