10.3321/j.issn:0254-4164.2007.08.013
聚类集成中的差异性度量研究
集体的差异性被认为是影响集成学习的一个关键因素.在分类器集成中有许多的差异性度量被提出,但是在聚类集成中如何测量聚类集体的差异性,目前研究得很少.作者研究了7种聚类集体差异性度量方法,并通过实验研究了这7种度量在不同的平均成员聚类准确度、不同的集体大小和不同的数据分布情况下与各种聚类集成算法性能之间的关系.实验表明:这些差异性度量与聚类集成性能间并没有单调关系,但是在平均成员准确度较高、聚类集体大小适中和数据中有均匀簇分布的情况下,它们与集成性能间的相关度还是比较高的.最后给出了一些差异性度量用于指导聚类集体生成的可行性建议.
集成学习、聚类集成、差异性、度量
30
TP181(自动化基础理论)
2007-10-08(万方平台首次上网日期,不代表论文的发表时间)
共10页
1315-1324