期刊专题

10.15890/j.cnki.jsjs.2020.05.027

基于Adaboost集成模型的城市短期供水量预测方法

引用
为解决供水量预测精度问题,以上海市中心城区历史用水数据为基础,结合影响水量供给的多种因子,利用特征工程相关算法筛选出最优因子组合,采用基于机器学习Adaboost集成模型构建城市供水量预测模型.研究发现:与该市传统的依赖于人工的预测方法相比,日水量模型使预测误差上限由平均10万t/d降低到7万t/d,平均相对误差降低为1.5%;时水量模型使预测误差上限由平均1.5万t/h降低到0.4万t/h,平均相对误差降低为1.9%.同时,与其他的机器学习模型相比,此模型有效可行,能够提高供水量预测精度,降低能耗成本.

机器学习、特征工程、Adaboost集成模型、日供水量预测、时供水量预测

39

TU991.3(地下建筑)

2020-06-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

164-170

相关文献
评论
暂无封面信息
查看本期封面目录

净水技术

1009-0177

31-1513/TQ

39

2020,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn