期刊专题

10.11896/jsjkx.220300202

一种新的代价敏感SVDD二类分类方法

引用
为提升代价敏感分类性能,通过提升较高误分代价类别的学习精度来降低总误分代价,利用支持向量域描述(Support Vector Domain Description,SVDD)实现代价敏感分类,提出一种代价敏感SVDD二类分类方法CS-SVDD.该方法首先将单类SVDD拓展为二类分类SVDD,对不同类别分别构建SVDD超球体,通过误分类代价调节SVDD分类器对不同类别样本的分类精度,对误分代价高的类别进行更为精确的学习,从而降低总误分代价;对于处于两个超球体之外或覆盖区域的类别属性不明确的样本,以误分代价最小为原则定义代价敏感决策规则.在人工数据集和UCI数据集上与同类方法进行了实验比较,实验结果表明了所提方法的有效性.

代价敏感分类、支持向量数据描述、支持向量

50

TP391(计算技术、计算机技术)

2023-09-06(万方平台首次上网日期,不代表论文的发表时间)

共5页

137-141

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn