期刊专题

10.11896/jsjkx.230500158

骨架数据增强和双重最近邻检索自监督动作识别

引用
传统基于骨架数据的自监督方法常将某一样本的不同增强作为正例,将其余样本均视为负例,这使得正负样本的比例严重失衡,限制了相同语义信息的样本发挥作用.针对上述问题,提出了一种正样本不受数据增强限制的双重最近邻检索动作识别算法DNNCLR.首先,基于人体关节的物理连接设计了一个新的关节级空间数据增强,即Bodypart增强,对输入的骨架序列用正态分布数组随机替换,以获得高级语义嵌入;其次,为避免正样本受数据增强的限制,提出了一种更合理的双重最近邻检索(DNN)正样本扩充策略,进一步提出了双重最近邻检索对比损失DNN Loss.具体为利用支撑集进行全局检索,将正样本集的寻找范围扩展到普通数据增强无法覆盖的新数据点;而负样本集中存在被误判的正样本,其是来自不同视频但语义信息相同的骨架样本.为此,再一次利用最近邻检索,从负样本集中寻找这种潜在的正例,二次扩展正样本集,并进一步提出双重最近邻检索对比损失,迫使模型学习更多的一般特征表示,使得模型优化更加合理.最后,将DNNCLR算法应用在AimCLR模型上,得到AimDNNCLR模型,并在NTU-RGB+D数据集上对该模型进行了线性评估,与前沿模型相比,所提方法在精度上平均提升了3.6%.

对比学习、最近邻检索、数据增强、动作识别、人体骨架

50

TP391.41;TP183(计算技术、计算机技术)

2023-11-17(万方平台首次上网日期,不代表论文的发表时间)

共10页

97-106

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn