期刊专题

10.11896/jsjkx.220900214

融合无监督SimCSE的短文本聚类研究

引用
传统的浅层文本聚类方法在对短文本聚类时,面临上下文信息有限、用词不规范、实际意义词少等挑战,导致文本的嵌入表示稀疏、关键特征难以提取等问题.针对以上问题,文中提出一种融合简单数据增强方法的深度聚类模型SSKU(SBERT SimCSE K-means Umap).该模型采用SBERT对短文本进行嵌入表示,利用无监督SimCSE方法联合深度聚类K-Means算法对文本嵌入模型进行微调,改善短文本的嵌入表示使其适于聚类.使用Umap流形降维方法学习嵌入局部的流形结构来改善短文本特征稀疏问题,优化嵌入结果.最后使用K-Means算法对降维后嵌入进行聚类,得到聚类结果.在StackOverFlow,Bi-omedical等4个公开短文本数据集进行大量实验并与最新的深度聚类算法作对比,结果表明所提模型在准确度与标准互信息两个评价指标上均表现出良好的聚类性能.

短文本、深度聚类、预训练模型、降维方法、自然语言处理

50

TP391(计算技术、计算机技术)

2023-11-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

71-76

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn