期刊专题

10.11896/jsjkx.220900108

基于提示学习的生物医学关系抽取方法

引用
在非结构化生物医学文本数据中提取出实体之间的关系,对生物医学的信息化发展有着重大意义,同时也是自然语言处理领域的研究热点.目前,在生物医学数据中正确地提取出实体间的关系面临着两个难点:1)由于在生物医学数据中实体单词大多由复合词、未知词组成,模型难以学习到实体内部的语义特征;2)由于生物医学带标注数据较少,而神经网络的参数量较大,使得神经网络容易过拟合.因此,文中提出了基于提示学习的生物医学关系抽取方法,增加了一种针对实体的注解标签,来对实体进行提示以达到实体语义增强以及联系上下文信息的目的.此外,在传统提示调优方法的基础上,文中使用连续性模板来缓解人工设计模板所带来的性能偏差,同时结合深度前缀控制 attention的深度提示能力,使模型在处理较少数据的情况时仍能取得良好的效果.

关系抽取、生物信息抽取、提示调优

50

TP391(计算技术、计算机技术)

2023-10-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

223-229

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn