基于张量加权与截断核范数的交通数据修复方法
数据缺失问题严重影响了智能交通系统中通过数据监控交通态势、预测交通流量、部署交通规划等一系列活动.为此,运用基于张量奇异值分解的低秩张量补全框架提出了加权与截断核范数相结合的交通流数据重构模型 WLRTC-TTNN(Low Rank Tensor Completion of Weighted and Truncated Nuclear Norm),该模型可以有效地对缺失的时空交通数据进行修复.WLRTC-TTNN方法主要有两方面的优点:一是加入权重因子解决了原始模型对数据输入方向的依赖问题,实现了模型方向的灵活性;二是运用张量的截断核范数来代替张量的核范数作为张量秩最小化的凸代理,保留了时空交通数据内部主要的特征信息,且根据广义奇异值阈值理论,对较小奇异值进行惩罚处理,进一步优化了模型,最终使用交替乘子法实现了 WLRTC-TTNN 算法.在两个公开的时空交通数据集上选取不同的缺失场景与缺失率进行实验,结果表明:WLRTC-TTNN的补全性能优于其他基线模型,整体的补全精度提高了 3%~37%,在数据极端缺失的情况下,其补全效果更加稳定.
智能交通、数据修复、张量加权、截断核范数、交替乘子法
50
TP274.2(自动化技术及设备)
2023-08-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
45-51