期刊专题

10.11896/jsjkx.220900176

基于改进粒子群算法的云数据中心能耗优化任务调度策略

引用
随着云计算的发展,能耗急剧上升,这进一步限制了云数据中心整体性能的提高,因此能耗问题引起了工业界和学术界的重视.同时,传统粒子群算法被广泛应用于数据中心任务调度问题的求解,但其收敛速度慢、精度低,容易忽略集群能耗问题.为此提出了 一种基于反向学习的混沌映射自适应粒子群算法(OAPSO).首先,采用反向学习的方法产生初始种群,使粒子更加均匀地分布于初始解空间,提高了初始种群的质量;其次,在粒子更新方式中引入非线性递减的动态惯性权重策略,以改变粒子的寻优能力,使局部搜索和全局搜索达到平衡,避免算法陷入局部最优;然后,引入混沌映射策略,在最优解位置进行扰动变异产生新解,提高算法从局部最优中跳出的能力.最后,在Cloudsim平台上对所提算法进行实验验证,结果表明,与PSO,OBL_TP_PSO和SAPSO算法相比,OAPSO算法资源利用率更高,节能效果更好.

云数据中心、任务调度、粒子群算法、混沌映射、能耗优化

50

TP393(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;宁夏自然科学基金项目;宁夏自然科学基金项目;宁夏自然科学基金项目;北方民族大学中央高校基本科研业务费专项;北方民族大学校级一般项目

2023-07-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

246-253

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn