期刊专题

10.11896/jsjkx.220300154

基于多粒度实体异构图的篇章级事件抽取方法

引用
篇章级事件抽取是一项面向多个句子长文本的事件抽取任务,现有的篇章级事件抽取研究一般将事件抽取分为候选实体抽取、事件检测和论元识别3个子任务,且通常采用联合学习的方式进行训练.然而,已有篇章级事件抽取方法大都采用逐句的方式抽取候选实体,未考虑跨句的上下文信息,明显降低了实体抽取和论元识别的精度,影响了最终的事件抽取效果.基于此,文中提出了一种基于多粒度实体异构图的篇章级事件抽取方法.该方法分别采用Transformer和RoBerta两个独立的编码器进行句子级和段落级实体抽取;同时,提出了多粒度实体选择策略,从句子实体集和段落实体集中选择更可能是论元的实体,并进一步构造融入多粒度实体的异构图;最后,利用图卷积网络获得具有篇章级上下文感知的实体和句子表示,进行事件类型和事件论元的多标签分类,实现事件检测和论元识别.在ChFinAnn和Duee-fin数据集上进行了实验,结果表明,所提方法比以往的方法在F1值方面分别提高了约1.3%和3.9%,证明了该方法的有效性.

篇章级事件抽取、事件抽取、异构图、实体抽取、多粒度

50

TP391(计算技术、计算机技术)

国家自然科学基金;国家重点研发计划

2023-05-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

255-261

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn