期刊专题

10.11896/jsjkx.220100094

一种基于神经网络的代码嵌入方法

引用
对代码进行分析研究具有很多的应用场景,例如代码抄袭检测、软件漏洞搜索等.随着人工智能的发展,神经网络技术被广泛应用于代码分析和研究.然而,现有的方法要么简单地将代码视为普通的自然语言处理,要么使用太过复杂的规则对代码进行采样,前者的处理方式容易造成代码关键信息的丢失,而后者会造成算法过于复杂,模型的训练需要花费较长的时间.Alon等提出了一种名为Code2vec的算法,该算法采用了一种简单且有效的代码表示方法,相比之前的代码分析方法有着显著的优势,但Code2vec算法仍存在一些局限性.因此,在其基础上提出了一种基于神经网络的代码嵌入方法,该方法的主要思想是将代码函数表示为代码的嵌入向量.首先将一个代码函数分解为一系列抽象语法树路径,然后通过神经网络去学习如何表示每一条路径,最后将所有路径聚合成一个嵌入向量来表示当前的代码函数.文中实现了一个基于该方法的原型系统,实验结果表明,相比Code2vec,所提算法的结构更加简单、训练速度更快.

神经网络、代码嵌入、代码分析、抽象语法树、代码分类

50

TP311(计算技术、计算机技术)

2023-05-12(万方平台首次上网日期,不代表论文的发表时间)

共8页

64-71

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn