期刊专题

10.11896/jsjkx.221000044

深度学习可解释性综述

引用
随着数据量呈爆发式增长,深度学习理论与技术取得突破性进展,深度学习模型在众多分类与预测任务(图像、文本、语音和视频数据等)中表现出色,促进了深度学习的规模化与产业化应用.然而,深度学习模型的高度非线性导致其内部逻辑不明晰,并常常被视为"黑箱"模型,这也限制了其在关键领域(如医疗、金融和自动驾驶等)的应用.因此,研究深度学习的可解释性是非常必要的.首先对深度学习的现状进行简要概述,阐述深度学习可解释性的定义及必要性;其次对深度学习可解释性的研究现状进行分析,从内在可解释模型、基于归因的解释和基于非归因的解释3个角度对解释方法进行概述;然后介绍深度学习可解释性的定性和定量评估指标;最后讨论深度学习可解释性的应用以及未来发展方向.

深度学习、可解释性、归因解释、非归因解释、评估方法

50

TP181(自动化基础理论)

国家自然科学基金;国家重点研发计划;国家重点研发计划

2023-05-12(万方平台首次上网日期,不代表论文的发表时间)

共12页

52-63

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn