期刊专题

10.11896/jsjkx.221000028

软件缺陷预测模型可解释性对比

引用
软件缺陷预测已经成为软件测试中的重要研究方向,缺陷预测的全面与否直接影响着测试效率和程序运行.但现有的缺陷预测是根据历史数据进行推断,大多不能对预测过程给出合理的解释,这种黑盒的预测过程仅仅展现输出结果,使得人们难以得知测试模型内部结构对输出的影响.为解决这一问题,需挑选软件度量方法和部分典型深度学习模型,对其输入、输出及结构进行简要对比,从数据差异程度和模型对代码的处理过程两个角度进行分析,对它们的异同给出解释.实验表明,采用深度学习的方法进行缺陷预测比传统软件度量方法更加有效,这主要是由它们对原始数据处理过程不同造成的;采用卷积神经网络和长短期记忆神经网络做缺陷预测时,数据差异主要由对代码信息理解的完整程度不同造成的.综上可知,要提高对软件缺陷的预测能力,模型的计算应该对代码的语义、逻辑和上下文联系进行全面的介入,避免有用信息被遗漏.

软件缺陷预测、可解释性、软件度量、神经网络、抽象语法树

50

TP311(计算技术、计算机技术)

2023-05-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

21-30

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn