软件缺陷预测模型可解释性对比
软件缺陷预测已经成为软件测试中的重要研究方向,缺陷预测的全面与否直接影响着测试效率和程序运行.但现有的缺陷预测是根据历史数据进行推断,大多不能对预测过程给出合理的解释,这种黑盒的预测过程仅仅展现输出结果,使得人们难以得知测试模型内部结构对输出的影响.为解决这一问题,需挑选软件度量方法和部分典型深度学习模型,对其输入、输出及结构进行简要对比,从数据差异程度和模型对代码的处理过程两个角度进行分析,对它们的异同给出解释.实验表明,采用深度学习的方法进行缺陷预测比传统软件度量方法更加有效,这主要是由它们对原始数据处理过程不同造成的;采用卷积神经网络和长短期记忆神经网络做缺陷预测时,数据差异主要由对代码信息理解的完整程度不同造成的.综上可知,要提高对软件缺陷的预测能力,模型的计算应该对代码的语义、逻辑和上下文联系进行全面的介入,避免有用信息被遗漏.
软件缺陷预测、可解释性、软件度量、神经网络、抽象语法树
50
TP311(计算技术、计算机技术)
2023-05-12(万方平台首次上网日期,不代表论文的发表时间)
共10页
21-30