期刊专题

10.11896/jsjkx.211100164

基于图像颜色随机变换的对抗样本生成方法

引用
尽管深度神经网络(Deep Neural Networks,DNNs)在大多数分类任务中拥有良好的表现,但在面对对抗样本(Adver-sarial Example)时显得十分脆弱,使得DNNs的安全性受到质疑.研究设计生成强攻击性的对抗样本可以帮助提升DNNs的安全性和鲁棒性.在生成对抗样本的方法中,相比需要依赖模型结构参数的白盒攻击,黑盒攻击更具实用性.黑盒攻击一般基于迭代方法来生成对抗样本,其迁移性较差,从而导致其黑盒攻击的成功率普遍偏低.针对这一问题,在对抗样本生成过程中引入数据增强技术,在有限范围内随机改变原始图像的颜色,可有效改善对抗样本的迁移性,从而提高对抗样本黑盒攻击的成功率.在ImageNet数据集上利用所提方法对正常网络及对抗训练网络进行对抗攻击实验,结果显示该方法能够有效提升所生成对抗样本的迁移性.

深度神经网络、对抗样本、白盒攻击、黑盒攻击、迁移性

50

TP393.08(计算技术、计算机技术)

2023-04-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

88-95

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn