期刊专题

10.11896/jsjkx.211200294

基于特征融合的边缘引导乳腺超声图像分割方法

引用
针对乳腺超声图像边缘模糊、斑点噪声多、对比度低等问题,提出了一种融合多特征的边缘引导多尺度选择性核U-Net(Edge-guided Multi-scale Selective Kernel U-Net,EMSK U-Net)方法.EMSK U-Net采用基于U-Net的对称编解码结构可以适应小数据集医学图像分割的特点,将扩张卷积与传统卷积构成选择性核模块作用于编码路径,并提取下采样过程中的选择性核特征进行边缘检测任务,在丰富图像空间信息的同时细化边缘信息,有效缓解斑点噪声和边缘模糊的问题,在一定程度上可以提升小目标的检测精度.然后在解码路径通过多尺度特征加权聚合获取丰富的深层语义信息,多种信息之间相互补充,从而提升网络的分割性能.在3个公开的乳腺超声图像数据集上的实验结果表明,与其他分割方法相比,EMSK U-Net算法各项指标表现良好,分割性能有显著提升.

乳腺超声图像分割、特征融合、边缘检测、多尺度特征、深度学习、U-Net

50

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;山西省重点研发项目;山西省研究生教育创新项目

2023-03-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

199-207

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn