基于李雅普诺夫优化的移动群智感知在线任务分配策略
移动群智感知技术基于众包思想,募集移动感知设备对周围环境进行感知,能够使得环境感知和信息收集更加灵活、方便、高效.任务分配方案的合理性直接影响到感知任务能否成功,因此制定合理的任务分配方案是移动群智感知相关研究中的热点和重点.目前,移动群智感知系统中的任务分配方法多是离线的,针对的是单一类型的任务,但是在实际中,在线的、多类型的任务分配更贴近实际.因此,文中针对多类型任务,将移动群智感知技术应用于军事末端感知中,结合移动群智感知技术在军事领域的应用特点,对移动群智感知中的任务分配方法进行了研究,提出了面向系统效益的在线任务分配策略.文中建立了长期的、动态的在线任务分配系统模型,并以系统效益为优化目标,基于李雅普诺夫优化理论对问题进行了求解,实现了任务准入策略和任务分配方案的长期在线动态控制.实验结果表明,所提出的在线任务分配算法是有效可行的,能够在线、合理地分配到达移动群智感知系统的任务,保证任务队列的稳定性,且可以通过调整参数值增加系统效益.
移动群智感知、系统效益、李雅普诺夫优化、任务队列稳定性
50
TP393(计算技术、计算机技术)
国家自然科学基金61871388
2023-03-08(万方平台首次上网日期,不代表论文的发表时间)
共7页
50-56