期刊专题

10.11896/jsjkx.221100133

基于层级化数据记忆池的边缘侧半监督持续学习方法

引用
外界环境的不断变化导致基于传统深度学习方法的神经网络性能有不同程度的下降,因此持续学习技术逐渐受到了越来越多研究人员的关注.在边缘侧环境下,面向边缘智能的持续学习模型不仅需要解决灾难性遗忘问题,还需要面对资源严重受限这一巨大挑战.这一挑战主要体现在两个方面:1)难以在短时间内花费较大的人工开销进行样本标注,导致有标注样本资源不足;2)难以在边缘平台部署大量高算力设备,导致设备资源十分有限.然而,面对这些挑战,一方面,现有经典的持续学习方法通常需要大量有标注样本才能维护模型的可塑性与稳定性,标注资源的缺乏将导致其准确率明显下降;另一方面,为了应对标注资源不足的问题,半监督学习方法为了达到更高的模型准确率,往往需要付出较大的计算开销.针对这些问题,提出了一个面向边缘侧的,能够有效利用大量无标注样本及少量有标注样本的低开销的半监督持续学习方法(Edge Hierarchical Memory Learner,简称为EdgeHML).EdgeHML通过构建层级化数据记忆池,使用多层存储结构对学习过程中的样本进行分级保存及回放,以在线与离线相结合的策略实现不同层级间的交互,帮助模型在半监督持续学习环境下学习新知识的同时更有效地回忆旧知识.同时,为了进一步降低针对无标注样本的计算开销,EdgeHML在记忆池的基础上,引入了渐进式学习的方法,通过控制模型对无标注样本的学习过程来减少无标注样本的迭代周期.实验结果表明,在CIFAR-10,CIFAR-100以及Ti-nylmageNet这3种不同规模的数据集构建的半监督持续学习任务上,EdgeHML相比经典的持续学习方法,在标注资源严重受限的条件下最高提升了约16.35%的模型准确率;相比半监督持续学习方法,在保证模型性能的条件下最高缩短了超过50%的训练迭代时间,实现了边缘侧高性能、低开销的半监督持续学习过程.

边缘智能、持续学习、半监督学习、数据标注、深度神经网络

50

TP301(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共9页

23-31

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn