基于地形认知的布料模拟滤波算法
数字高程模型(Digital Elevation Model,DEM)可以反映一个地区的地形特征,具有广泛的科研应用.对激光雷达点云数据进行点云滤波以提取地面点,并对地面点进行插值是构建DEM的常用步骤,其中在点云滤波过程中使用的滤波算法直接影响到最终构建的DEM的精度.布料模拟滤波(Cloth Simulation Filtering,CSF)算法作为一种点云滤波算法,具有模型简单、滤波效率高等优点,其针对平坦地区的滤波精度较高,但在处理复杂地形时会因布料模型的内部弹力以及重力惯性等因素,导致滤波结果的精度较差.为了提升CSF算法在处理复杂地形时的滤波精度和地形适应性,提高其构建DEM的精度,提出了基于地形认知的布料模拟滤波算法(Cloth Simulation Filtering Algorithm with Topography Cognition,CSFTC).该算法提出了地形认知模型,基于点云数据点的局部分布特征构建认知模型,并将其扩展为粗精度数字高程模型(Rough Digital Elevation Mo-del,R-DEM);通过点云地形归一化实现宏观地形趋势与微观地形细节的分离;最终使用经典CSF算法结合R-DEM实现了点云滤波.文中设计了CSFTC算法与经典CSF算法的对比实验,CSFTC算法的平均总误差率从9.30%下降到5.10%,平均Ⅱ类误差率从30.02%下降到8.46%.实验结果表明,与经典CSF算法相比,CSFTC算法在平坦地区的滤波精度小幅上升,对复杂地形的滤波精度明显上升,提升了算法的地形适应性;II类误差显著下降有助于提高构建的DEM的精度.
地形认知模型、点云、布料模拟滤波、数字高程模型、地形归一化
50
TP391(计算技术、计算机技术)
2023-02-07(万方平台首次上网日期,不代表论文的发表时间)
共10页
156-165