期刊专题

10.11896/jsjkx.211100074

基于差分进化算法的字符对抗验证码生成方法

引用
验证码被广泛应用于网站、应用程序的注册登录环节以区分人类用户与计算机程序.然而随着深度学习的发展,许多针对验证码的深度学习识别方法不断被提出,验证码不再能较好地区分人类用户与计算机程序,验证码的安全性面临着极大挑战.对抗样本可以使神经网络的输出结果产生大幅误差,将对抗样本与验证码结合以抵御深度学习识别系统对验证码的攻击是一种行之有效的方法.将图像领域的对抗样本生成方法用于生成对抗验证码来防御深度学习方法是当前的研究热点之一.现有的字符对抗验证码生成方法都是需要知道攻击网络的结构参数信息的白盒方法,然而在实际的验证码应用场景中通常无法知道攻击网络的信息,健壮性的验证码应该在不知道攻击者信息的情况下依然有良好的防御能力.因此提出了一种基于差分进化算法的黑盒字符型对抗验证码生成方法(Adversarial Character CAPTCHA Generation Method Based on Differential Evolution Algorithm,ACoDE),在无需了解攻击网络信息的情况下通过优化经典差分进化算法变异过程中的缩放因子以及种群进化策略来提高算法的求解能力,使对抗样本误导神经网络的能力更强.将该对抗样本生成方法用于字符验证码数据集后目前最先进的基于卷积神经网络的字符型验证码识别系统的识别准确率降低到了30%以下,且对抗验证码的视觉效果比其他白盒方法生成的对抗验证码更好.

深度学习、对抗样本、差分进化算法、验证码、网络安全

49

TP391(计算技术、计算机技术)

国家自然科学基金;深圳市基础研究面上项目

2023-05-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

709-714

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn