期刊专题

10.11896/jsjkx.210800149

一种基于图注意力聚合的POI推荐新方法

引用
在基于位置社交网络(Location-based Social Network,LBSNs)的服务中,有效的兴趣点(Point-of-Interest,POI)推荐具有极大的经济和社会效用,但如何深入理解LBSN中的位置、结构和行为等相关信息,并进行推理以及实现POI推荐仍然是一项挑战性任务.针对LBSNs中的多种异构数据,提出了一种能够挖掘用户社交和POI多种特征信息的用于POI推荐的图神经网络模型——POIR-GAT.首先POIR-GAT利用社交关系构建用户-用户图,并结合用户-POI交互图共同抽取用户特征向量;其次,基于POI的不同地理特征构造不同的特征矩阵,并通过矩阵分解获得不同的潜在因子,将这些潜在因子融入POI的特征向量,以学习它们对用户行为的共同影响,并用于实现融合社交因素和POI特征的推荐模型.通过在2个公开数据集上进行的实验,验证了所提POIR-GAT模型可以有效融合用户社交信息和POI特征信息,提高POI推荐质量.

LBSNs、POI推荐、图注意神经网络、特征矩阵分解

49

TP391.3(计算技术、计算机技术)

广西驱动重大专项基金;广西可信软件重点实验室项目

2023-05-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

277-281

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn