面向供应链风险评估的改进BP小波神经网络研究
针对供应链风险在制造行业上下游企业之间产生的影响,首先以供应链运作参考(Supply Chain Operation Reference,SCOR)模型为基础,以汽车制造企业为研究背景,通过对汽车供应链风险进行分析并结合现场调研结果,研究了供应链风险指标识别过程,建立了涉及战略计划风险等五大风险类别的评价指标体系.其次,鉴于BP神经网络模型在优化评估过程中容易出现局部最优解等问题,通过增加动量对其改进优化,同时用Morlet小波函数替换基础评价模型中的S型函数,重构供应链风险评价模型.最后,通过汽车企业实际案例进行风险识别与评估研究,采用Matlab进行仿真,对比分析改进BP小波神经网络与模糊综合评价、BP神经网络、增加动量的BP神经网络,结果表明,改进的BP小波神经网络模型具有良好的实用性和可靠性.
供应链、风险识别、SCOR、小波理论、BP神经网络
49
TP391.9(计算技术、计算机技术)
中央引导地方科技发展资金计划;辽宁省自然科学基金
2022-06-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
654-660