存在CSI估计错误的增强型ELM叠加CSI反馈方法
在大规模多输入多输出(Massive-Multiple Input and Multiple-Output,mMIMO)系统中,叠加信道状态信息(Channel State Information,CSI)反馈可避免上行带宽资源占用,但叠加干扰会造成接收机计算复杂度高、反馈精度低等问题,且均未考虑存在CSI估计错误的实际应用场景.为此,针对存在CSI估计错误场景下的叠加CSI反馈,在改进极限学习机(Extreme Learning Machine,ELM)的基础上,提出基于增强型ELM的叠加CSI反馈方法.首先,基站对接收信号进行预均衡处理,初步消除上行信道干扰;然后对传统叠加CSI反馈进行迭代展开,构建增强型ELM网络,通过规范化各个ELM网络的隐藏层输出来增强网络学习数据分布的能力,从而改善恢复下行CSI和上行用户数据序列(Uplink User Data Sequence,UL-US)的精确性.仿真实验表明,与经典和时新的叠加CSI反馈方法相比,所提方法能够获得相似或更好的下行CSI和上行用户数据的恢复精确性;同时,针对不同的参数影响,性能改善具有鲁棒性.
极限学习机、信道状态信息、叠加CSI反馈、估计错误、大规模多输入多输出
49
TN929
四川省科技创新人才项目;四川省产业发展专项;四川省科技计划项目;成都市第二批重大科技应用示范项目
2022-06-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
632-638