未知网络攻击识别关键技术研究
入侵检测是一种主动防御网络中攻击行为的技术,在网络管理方面起着至关重要的作用,而传统的入侵检测技术无法识别未知攻击,也是长期困扰本领域的难题.针对未知类型的入侵攻击,提出了K-Means与FP-Growth算法相结合的未知攻击识别模型,以实现对未知攻击的规则进行提取.首先,对于多种未知攻击混合的数据,根据样本间的相似性用K-Means进行聚类分析,引入轮廓系数评估聚类的效果,聚类完成之后,同种未知攻击被分到相同的簇中,人工提取未知攻击的特征,对特征数据进行预处理,将连续型特征离散化,然后用FP-Growth算法挖掘未知攻击数据的频繁项集和关联规则,最后对其进行分析,得出该未知攻击的规则,用规则对该类型的未知攻击进行检测,结果表明,所提模型的准确率可达98.74%,优于其他相关模型.
入侵检测、未知攻击、K-Means、FP-Growth、关联规则
49
TP181(自动化基础理论)
赛尔网络下一代互联网技术创新项目NGII20170210
2022-06-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
581-587