基于残差网络和循环神经网络混合模型的应用层协议识别方法
针对现有协议识别方法无法有效提取协议数据的时间和空间特征导致协议识别准确率不高的问题,提出了一种基于一维残差网络和循环神经网络的应用层协议识别方法.所构造的协议识别模型由一维预激活残差网络(PreResNet)和双向门控循环神经网络(BiGRU)组成,利用一维PreResNet提取协议数据的空间特征,利用BiGRU提取协议数据的时间特征,在此基础上通过注意力机制提取与协议识别有关的关键特征来提高协议识别的准确率.所提方法首先从网络流量中提取应用层协议数据,对数据进行预处理,从而将其转化为一维向量;然后利用训练数据对分类模型进行训练,得到成熟的协议识别模型;最后用训练好的分类模型识别应用层协议.在公开数据集ISCX2012上进行测试实验,结果表明,所提协议识别模型的总体准确率为96.87%,平均F值为96.81%,高于对比的协议识别模型.
循环神经网络、残差网络、协议识别、网络安全
49
TP398.08(计算技术、计算机技术)
国家重点研发计划2017YFB0802900
2022-11-10(万方平台首次上网日期,不代表论文的发表时间)
共9页
293-301