期刊专题

10.11896/jsjkx.220300251

基于优化YOLO-V4的交通标志检测识别方法

引用
交通标志检测识别是自动驾驶系统的核心功能,为了实时准确地识别交通标志,在YOLO-V4的基础上进行改进,并结合了空间金字塔池化(Spatial Pyramid Pooling,SPP)模块.首先,为了提高分辨率和增大感受野,将原特征图3个尺度的分辨率更改为26×26和52×52;然后,在连接层中添加SPP模块,消除网络对固定尺度的约束,在最大池化层中得到最优特征,改善网络性能.实验中,利用行车记录仪采集各种交通标志图像,与其他优秀方法相比,所提方法取得了更优的性能,其平均检测识别准确度达99.0%,平均检测时间为0.449 s,达到了实时检测的要求.

交通标志识别、感受野、YOLO-V4、最大池化、空间金字塔池化、分辨率

49

TP391(计算技术、计算机技术)

国家自然科学基金;福建省科技厅引导性项目

2022-11-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

179-184

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn