期刊专题

10.11896/jsjkx.220600009

基于跨尺度特征融合自注意力的图像描述方法

引用
近年来,基于自注意力机制的编码器-解码器框架已经成为主流的图像描述模型.然而,编码器中的自注意力只建模低尺度特征的视觉关系,忽略了高尺度视觉特征中的一些有效信息,从而影响了生成描述的质量.针对该问题,文中提出了一种基于跨尺度特征融合自注意力的图像描述方法.该方法在进行自注意力运算时,将低尺度和高尺度的视觉特征进行跨尺度融合,从视觉角度上提高自注意力关注的范围,增加有效视觉信息,减少噪声,从而学习到更准确的视觉语义关系.在M S CO-CO数据集上的实验结果表明,所提方法能够更精确地捕获跨尺度视觉特征间的关系,生成更准确的描述.特别地,该方法是一种通用的方法,通过与其他基于自注意力的图像描述方法相结合,能进一步提高模型性能.

图像描述、自注意力、跨尺度特征融合

49

TP181(自动化基础理论)

国家自然科学基金;北京市教育委员会科学研究计划;北京市教育委员会科学研究计划

2022-10-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

191-197

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn