期刊专题

10.11896/jsjkx.210900139

基于温度以及运行数据的电缆接头绝缘劣化状态预测

引用
电缆接头绝缘劣化会导致热损耗的增加进而引起接头表面温度上升,同时表面温度受到运行负荷、环境温度等多方面因素的影响,总体上劣化程度与温度数据表现出非线性分布的情况.为此,提出了基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化的核极限学习机(Kernel Based Extreme Learning Machine,KELM)的电缆接头绝缘劣化程度预测方法.首先通过实验来验证电缆接头多物理耦合模型的计算准确性,并通过耦合计算模型来获取不同劣化程度、载荷和环境温度下的电缆接头表面温度分布,用于构建训练集、验证集和测试集.其次基于鸟群算法(Bird Swarm Algorithm,BSA)中飞行行为的思想优化麻雀搜索算法,保证了全局收敛又不失种群多样性,有效跳出局部最优.然后通过ISSA算法对KELM的惩罚系数C和核函数σ进行优化,得到绝缘劣化状态预测模型.研究结果表明,改进麻雀算法优化的核极限学习机(ISSA-KELM)的预测效果明显优于其他模型.

电缆接头、绝缘劣化、麻雀搜索算法、核极限学习机

49

TP806+.3(远动技术)

国网安徽省电力有限公司科技项目5212D019015A

2022-10-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

132-137

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn