期刊专题

10.11896/jsjkx.220700064

基于注意力机制交互卷积神经网络的推荐方法

引用
为了捕捉在线购物时用户与商品之间的动态交互关系,提高推荐系统(RS)的准确度,提出了结合用户倾向性和商品吸引力的用户评价预测方法.首先,将评论分为用户评论文本和商品评论文本,分别输入两个交互卷积神经网络(CNN),并结合注意力机制,动态捕捉文本中的语义信息和上下文信息,得到用户和商品的自适应特征;然后,利用交互注意力网络,分析商品特征和用户特征的动态交互关系,计算出用户对特定商品的倾向性和商品对特定用户的吸引力;最后,通过预测模块提供用户对商品的准确评价预测.在数据集上进行实验,结果表明,所提方法取得了最优性能,比其他方法的MAE和RMSE性能分别至少提升了15.1% 和13.6%.此外,基于T o p-K的统计指标进一步验证了所提方法的商品推荐精准度.

推荐系统、用户倾向性、卷积神经网络、交互注意力机制、上下文特征

49

TP391.41(计算技术、计算机技术)

山西省自然科学基金;山西省教育厅项目;山西省科技厅基础研究项目;江西省教育厅科学技术研究项目

2022-10-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

126-131

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn