期刊专题

10.11896/jsjkx.210800112

基于值分解的多智能体深度强化学习综述

引用
基于值分解的多智能体深度强化学习是众多多智能体深度强化学习算法中的一类,也是多智能体深度强化学习领域的一个研究热点.它利用某种约束将多智能体系统的联合动作值函数分解为个体动作值函数的某种特定组合,能够有效解决多智能体系统中的环境非稳定性和动作空间指数爆炸等问题.文中首先说明了进行值函数分解的原因;其次,介绍了多智能体深度强化学习的基本理论;接着根据是否引入其他机制以及引入机制的不同将基于值分解的多智能体深度强化学习算法分为3类:简单因子分解型、基于IG M(个体-全局-最大)原则型以及基于注意力机制型;然后按分类重点介绍了几种典型算法并对算法的优缺点进行对比分析;最后简要阐述了所提算法的应用和发展前景.

值函数分解、多智能体深度强化学习、注意力机制、IG M原则

49

TP181(自动化基础理论)

2022-09-16(万方平台首次上网日期,不代表论文的发表时间)

共11页

172-182

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn