期刊专题

10.11896/jsjkx.220400146

一种基于节点稳定性和邻域相似性的社区发现算法

引用
复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量.基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm,NSNSA).首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果.在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap,Infomap,LPA-S等经典社区发现算法的对比实验表明,NSNSA算法在模块度以及标准互信息方面表现良好.

复杂网络、社区结构、标签熵、节点稳定性、邻域相似性

49

TP391(计算技术、计算机技术)

国家自然科学基金;山西省工程项目

2022-09-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

83-91

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn