期刊专题

基于软标签和样本权重优化的Anchor Free目标检测算法

引用
与Anchor Based目标检测算法类似,基于特征点的Anchor Free目标检测算法也面临着在正负样本划分中存在模糊样本的问题,即根据特定阈值和特征点位置划分非正即负的训练样本,网络在对特征点位置处在临界值附近的样本进行训练时会产生较大的损失,使得网络将注意力过于集中在这些模糊样本上,降低了网络的整体检测性能.针对此情况,提出从软标签、损失函数和权重优化3个方面对基于特征点的Anchor Free目标检测算法进行改进,通过充分利用Center Ness参数来缓解模糊样本对网络性能的影响,提高目标检测的准确率.为证明所提方法的有效性,分别在经典的Pascal VOC数据集和M S CO-CO数据集上使用FCOS目标检测器进行对比实验,最终将检测器在Pascal VOC数据集上的mA P提升至82.16%(提升约1.31%),在M S COCO数据集上的A P50-95提升至35.8%(提升约1.3%).

目标检测、模糊样本、Anchor Free、Center Ness、样本权重优化

49

TP183(自动化基础理论)

特色民族文化矢量数字化资源复用与产业创新项目

2022-08-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

157-164

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn