基于QRNN的网络协议模糊测试用例过滤方法
目前,网络协议模糊测试的目标趋向于大型协议实体,而传统的测试用例过滤方法主要是基于测试对象的运行状态信息,测试对象越庞大,其执行单个测试用例的时间也越长.因此,针对传统的网络协议模糊测试用例过滤方法存在无效执行时间长、效率低下的问题,依据循环神经网络模型对序列数据较强的处理和预测能力,提出一种基于QRNN的网络协议模糊测试用例过滤方法.通过学习网络协议的结构特征,包括字段取值范围和字段间约束关系,该方法可以自动过滤无效测试用例,减少协议实体测试用例的执行次数.实验结果表明,与传统的网络协议模糊测试用例过滤方法相比,所提方法可以有效降低网络协议漏洞挖掘的时间成本,显著提高网络协议模糊测试的效率.
测试用例过滤、QRNN、网络协议、模糊测试、深度学习
49
TP393(计算技术、计算机技术)
国家重点研发计划2017YFB0802900
2022-05-11(万方平台首次上网日期,不代表论文的发表时间)
共7页
318-324