期刊专题

10.11896/jsjkx.210300286

基于卷积神经网络的旁路密码分析综述

引用
旁路建模分析方法可以有效攻击密码实现,其中基于卷积神经网络的旁路密码分析方法(CNNSCA)可以高效地进行密码攻击,甚至能够攻击有防护的加密算法设备.针对现阶段旁路密码分析建模方法的研究现状,对比分析了几种CNNSCA的模型特点和性能差异,并针对典型CNN模型结构以及旁路信号公共数据集ASCAD,通过模型对比及实验结果分析不同的CNN网络建模方法的效果,进而分析影响CNNSCA方法的性能因素、基于卷积神经网络的旁路建模方法的优势.由分析可知,基于VGG变体的CNNSCA在攻击各种情况的目标数据集时泛化性、鲁棒性表现最好,但使用的CNN模型训练程度及超参数设置是否最适用于SCA场景并未得到验证.今后研究者可通过调整CNN模型的各种超参数,使用数据增强技术,结合Imagenet大赛中优秀CNN网络等手段,来提升CNNSCA的分类准确率和破密性能,探索最适用于SCA场景的CNN模型是未来的发展趋势.

旁路分析、建模方法、卷积神经网络、超参数、性能评估

49

TP309.7(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金

2022-05-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

296-302

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn