基于深度学习的自动调制识别研究
非合作通信场景下,自动调制识别是实现频谱感知、频谱管理、频谱利用的关键一环,也是进行高效信号处理的重要前提.传统基于模式识别的AMR方法需要手工进行特征提取,面临着设计复杂性高、识别精度低、泛化能力弱等难题.为此,学术界将目光转向以提取数据中隐含特征见长的深度学习方法,提出了多种面向AMR的深度神经网络架构.相比传统方法,ADNN取得了更高的识别精度,且泛化能力更强,适用范围更广.文中对ADNN领域的研究进行了全面的梳理总结,使从业者可以更好地了解该领域的研究现状,明晰该领域存在的问题以及未来的发展方向.首先,介绍了ADNN设计中涉及的典型DL方法;其次,描述了AMR问题的内涵,简述了传统解决方案;然后,详细介绍了ADNN的工作流程、方法分类和各类方法中的典型代表;最后,在公开数据集上对代表性方案进行了实验对比,并指出了该领域未来需要重点研究的几个方向.
深度学习、深度神经网络、自动调制识别、安全
49
TN971
2022-05-11(万方平台首次上网日期,不代表论文的发表时间)
共13页
266-278