期刊专题

10.11896/jsjkx.210400142

基于改进CenterNet的航拍绝缘子缺陷实时检测模型

引用
针对无人机在电力巡检过程中对绝缘子及其缺陷检测的准确率较低、实时性较差的问题,提出一种改进CenterNet的绝缘子缺陷检测模型.首先,使用轻量级网络EfficientNet-B0代替原始模型的特征提取网络ResNet18,在保证模型提取能力的同时加快了其推理速度;其次,搭建特征加强模块(Feature Enhancement Module,FEM),并对经过上采样后的特征通道权重进行合理分配,抑制无效特征,并借鉴FPN(Feature Pyramid Networks)融合浅层与深层特征,使特征层信息更加丰富;然后在CenterNet-Head中引入空间和通道混合的注意力机制CA(Coordinate Attention),使类别和位置信息的预测更加准确;最后,使用Soft-NMS解决在模型检测过程中由中心点预测不准导致的"单目标多框"问题.实验结果表明,改进的CenterNet比原始模型的精度提高了11.92%,速度提高了8.95 FPS,模型大小减小了54 MB.与其他检测模型相比,改进模型的精度与速度均有提高,证明了其实时性和鲁棒性.

绝缘子、缺陷检测、特征融合、注意力机制、CenterNet

49

TM933;TN919.8;TM769

国家自然科学基金;国家自然科学基金

2022-05-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

84-91

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn