基于改进CenterNet的航拍绝缘子缺陷实时检测模型
针对无人机在电力巡检过程中对绝缘子及其缺陷检测的准确率较低、实时性较差的问题,提出一种改进CenterNet的绝缘子缺陷检测模型.首先,使用轻量级网络EfficientNet-B0代替原始模型的特征提取网络ResNet18,在保证模型提取能力的同时加快了其推理速度;其次,搭建特征加强模块(Feature Enhancement Module,FEM),并对经过上采样后的特征通道权重进行合理分配,抑制无效特征,并借鉴FPN(Feature Pyramid Networks)融合浅层与深层特征,使特征层信息更加丰富;然后在CenterNet-Head中引入空间和通道混合的注意力机制CA(Coordinate Attention),使类别和位置信息的预测更加准确;最后,使用Soft-NMS解决在模型检测过程中由中心点预测不准导致的"单目标多框"问题.实验结果表明,改进的CenterNet比原始模型的精度提高了11.92%,速度提高了8.95 FPS,模型大小减小了54 MB.与其他检测模型相比,改进模型的精度与速度均有提高,证明了其实时性和鲁棒性.
绝缘子、缺陷检测、特征融合、注意力机制、CenterNet
49
TM933;TN919.8;TM769
国家自然科学基金;国家自然科学基金
2022-05-11(万方平台首次上网日期,不代表论文的发表时间)
共8页
84-91