基于SVM的类别增量人体活动识别方法
基于人体活动识别(Human Activity Recognition,HAR)的健康监护是发现健康异常的一种重要手段.然而,在日常活动识别中,很难提前获取包含所有可能活动类别的训练样本.当预测阶段出现新增类别时,传统的支持向量机(Support Vector Machine,SVM)会将其错误地分类为已知类别.一个鲁棒的分类器应该能够分辨出新增类别,以便后续区别于已知类别并对其进行处理.文中提出一种基于SVM的类别增量人体活动识别方法,引入超球面的思想,既能高精度地识别已知活动类别,又能检测出新增类别.通过训练得到的多个超球面将整个特征空间进行划分,使分类器具有对新增活动类别的检测能力.实验结果表明,与传统多分类SVM方法相比,该方法能够在不显著降低已知类别分类效果的前提下实现对新增类别的检测,从而提高分类器在开放环境下的人体活动识别能力.
人体活动识别、支持向量机、超球面、聚类可分、类别增量
49
TP391.41(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;河北省高等学校科学技术研究资助项目
2022-05-11(万方平台首次上网日期,不代表论文的发表时间)
共6页
78-83