期刊专题

10.11896/jsjkx.210300251

改进YOLOv3网络模型的人体异常行为检测方法

引用
针对传统视频监控数据量大且复杂、不能及时有效地检测到人体异常行为的问题,文中提出了一种基于YOLOv3改进网络模型的人体异常行为检测方法(YOLOv3-MSSE).该方法基于经典YOLOv3网络模型,利用残差模块构建多尺度特征提取网络,提升了对大目标的检测精度;同时,在网络结构不同位置融入注意力机制,对特征图各个通道的特征重要性实现加权处理,有效提高了模型人体异常行为的检测性能.实验结果表明,相比传统YOLOv3算法,YOLOv3-MSSE方法的mAP值提升了20.8%,F1-scores提升了11.3%,该方法不仅能够有效地检测出监控场景中的人体特定异常行为,还能较好地平衡检测精确率与召回率之间的关系,比同类方法更适用于实际监控场景下的人体异常行为检测.

神经网络、异常行为、多尺度、注意力机制、残差网络

49

TP391(计算技术、计算机技术)

重庆市自然科学基金面上项目cstc2021jcyj-msxmX0525

2022-04-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

233-238

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn