期刊专题

10.11896/jsjkx.210200090

FMNN:融合多神经网络的文本分类模型

引用
文本分类是自然语言处理中一项基本且重要的任务.基于深度学习的文本分类方法大多只针对单一的模型结构进行深入研究,这种单一的结构缺乏同时捕获并利用全局语义特征与局部语义特征的能力,且网络的加深会损失更多的语义信息.对此,提出了一种融合多神经网络的文本分类模型FMNN(A Text Classification Model Fused with Multiple Neural Network),FMNN在最大限度减小网络深度的同时,融合了BERT,RNN,CNN和Attention等神经网络模型的特性.用BERT作为嵌入层获得文本的矩阵表示,用BiLSTM和Attention联合提取文本的全局语义特征,用CNN提取文本多个粒度下的局部语义特征,将全局语义特征和局部语义特征分别作用于softmax分类器,最后采用算术平均的方式对结果进行融合.在3个公开数据集和1个司法数据集上的实验结果表明,FMNN模型实现了更高的文本分类准确率,其中在司法数据集上的准确率达到了90.31%,证明了该模型具有较好的实用价值.

文本分类;深度学习;全局语义特征;局部语义特征;语义损失;融合

49

TP391(计算技术、计算机技术)

国家重点研发计划;国家重点研发计划;国家自然科学基金

2022-03-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

281-287

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn