期刊专题

10.11896/jsjkx.210400034

跨领域文本的可迁移情绪分析方法

引用
随着移动互联网的迅猛发展,社交网络平台充斥着大量带有情绪色彩的文本数据,对此类文本中的情绪进行分析研究不仅有助于了解网民的态度和情感,而且对科研机构和政府掌握社会的情绪变化及走向有着重要作用.传统的情感分析主要对情感倾向进行分析,无法精确、多维度地描述出文本的情绪,为了解决这个问题,文中对文本的情绪分析进行研究.首先针对不同领域文本数据集中情绪标签缺乏的问题,提出了一个基于深度学习的可迁移情绪分类的情感分析模型FMRo-BLA,该模型对通用领域文本进行预训练,然后通过基于参数的迁移学习、特征融合和FGM对抗学习,将预训练模型应用于特定领域的下游情感分析任务中,最后在微博的公开数据集上进行对比实验.结果表明,该方法相比于目前性能最好的RoBERTa预训练语言模型,在目标领域数据集上F1值有5.93%的提升,进一步加入迁移学习后F1值有12.38%的提升.

情绪分析;深度学习;特征融合;迁移学习

49

TP391(计算技术、计算机技术)

国家重点研发课题2020AAA0105101

2022-03-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

218-224

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn