期刊专题

10.11896/jsjkx.210700010

基于深度强化学习的无信号灯交叉路口车辆控制

引用
利用深度强化学习技术实现无信号灯交叉路口车辆控制是智能交通领域的研究热点.现有研究存在无法适应自动驾驶车辆数量动态变化、训练收敛慢、训练结果只能达到局部最优等问题.文中研究在无信号灯交叉路口,自动驾驶车辆如何利用分布式深度强化方法来提升路口的通行效率.首先,提出了一种高效的奖励函数,将分布式强化学习算法应用到无信号灯交叉路口场景中,使得车辆即使无法获取整个交叉路口的状态信息,只依赖局部信息也能有效提升交叉路口的通行效率.然后,针对开放交叉路口场景中强化学习方法训练效率低的问题,使用了迁移学习的方法,将封闭的8字型场景中训练好的策略作为暖启动,在无信号灯交叉路口场景继续训练,提升了训练效率.最后,提出了一种可以适应所有自动驾驶车辆比例的策略,此策略在任意比例自动驾驶车辆的场景中均可提升交叉路口的通行效率.在仿真平台Flow上对TD3强化学习算法进行了验证,实验结果表明,改进后的算法训练收敛快,能适应自动驾驶车辆比例的动态变化,能有效提升路口的通行效率.

自动驾驶;无信号灯交叉路口;深度强化学习;V2X

49

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;中国博士后科研基金项目;江苏省交通运输厅重大科技项目

2022-03-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

46-51

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn