融入句子中远距离词语依赖的图卷积短文本分类方法
随着图神经网络技术在自然语言处理领域中的广泛应用,基于图神经网络的文本分类研究受到了越来越多的关注,文本构图是图神经网络应用到文本分类中的一项重要研究任务,已有方法在构图时通常不能有效捕获句子中远距离词语的依赖关系.短文本分类是待分类文本中普遍较短的一类特殊文本分类任务,传统的文本表示通常比较稀疏且缺乏丰富的语义信息.基于此,文中提出了一种融入远距离词语依赖关系进行构图的图卷积短文本分类方法.首先结合词语共现关系、文档和词语之间的包含关系、远距离词语依赖关系为整个文本语料库构建一个文本图;然后将文本图输入到图卷积神经网络,通过2层卷积后,对每个文档节点进行类别预测.在on_line_shopping_10_cats、中文论文摘要和酒店评论3个数据集上的实验结果表明,所提方法相比已有基线模型取得了更好的效果.
短文本分类;图卷积神经网络;句法关系;文本构图;自然语言处理
49
TP391(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;山西省自然科学基金
2022-03-07(万方平台首次上网日期,不代表论文的发表时间)
共6页
279-284