基于改进DeeplabV3+的地物分类方法研究
原始DeeplabV3+算法对无人机航拍图像中的地物边缘分割不够准确,对道路的分割存在不连续的情况.因此,针对这些问题,文中对DeeplabV3+算法进行了改进.首先,在编码阶段进行特征融合,增强浅层特征图的语义信息;其次,在分割网络结构中添加边界提取分支模块,并采用Canny边缘检测算法提取真实的边界信息进行监督训练,使网络对地物边缘的分割更为精细;最后,在网络的解码阶段,融合更多的浅层特征.实验结果表明,所提方法的mIoU值为80.92%,比DeeplabV3+算法提升了6.35%,能够有效进行地物分类.
遥感图像;地物分类;边缘检测;DeeplabV3+;语义分割
48
TP274(自动化技术及设备)
2021-11-22(万方平台首次上网日期,不代表论文的发表时间)
共4页
382-385