期刊专题

10.11896/jsjkx.210300260

基于U-Net优化的SAR遥感图像语义分割

引用
多光谱图像的分割是遥感图像解译的重要基础环节,SAR遥感图像中包含着复杂的地物目标信息,传统的分割方法存在耗时长、效率低等问题,导致传统图像分割方法的应用受限.近年来,深度学习算法在计算机视觉方向的应用取得了较好的成果,针对多光谱遥感影像语义分割问题,使用深度学习的语义分割方法来实现遥感影像的高性能分割,在U-Net网络结构上添加激活层、Dropout层、卷积层,提出一种基于U-Net优化的深度卷积神经网络,在少量数据集的基础上实现了对以SAR图像合成的多光谱影像中耕地、建筑、河流的快速检测,整体分割准确率达94.6%.与U-Net,SegNet的对照实验结果表明,所提方法的分割准确率相比U-Net,SegNet整体较优,相比U-Net和SegNet分别提升了2.5%与5.8%.

U-Net;多光谱;深度学习;SAR;遥感影像;语义分割

48

TN959

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

376-381

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn