基于U-Net优化的SAR遥感图像语义分割
多光谱图像的分割是遥感图像解译的重要基础环节,SAR遥感图像中包含着复杂的地物目标信息,传统的分割方法存在耗时长、效率低等问题,导致传统图像分割方法的应用受限.近年来,深度学习算法在计算机视觉方向的应用取得了较好的成果,针对多光谱遥感影像语义分割问题,使用深度学习的语义分割方法来实现遥感影像的高性能分割,在U-Net网络结构上添加激活层、Dropout层、卷积层,提出一种基于U-Net优化的深度卷积神经网络,在少量数据集的基础上实现了对以SAR图像合成的多光谱影像中耕地、建筑、河流的快速检测,整体分割准确率达94.6%.与U-Net,SegNet的对照实验结果表明,所提方法的分割准确率相比U-Net,SegNet整体较优,相比U-Net和SegNet分别提升了2.5%与5.8%.
U-Net;多光谱;深度学习;SAR;遥感影像;语义分割
48
TN959
2021-11-22(万方平台首次上网日期,不代表论文的发表时间)
共6页
376-381