期刊专题

10.11896/jsjkx.201200113

基于YOLOv3算法的山区铁路边坡落石检测方法研究

引用
铁路沿线地段边坡落石检测对保障铁路沿线通车安全具有重要的现实意义.现有的检测方法存在检测成本高、操作复杂等缺点,针对以上问题,文中提出使用智能手机及民用相机结合补光器在实地多山地区采集多尺寸、多形状的各类岩石样本,利用深度卷积网络进行学习,提取落石样本相应特征进行训练,引入YOLOv3算法,构建山区铁路边坡落石检测深度学习模型,从而实现对山区铁路沿线地段边坡落石的实时检测,此外设置Faster RCNN算法作为平行对比实验.实验结果表明,两种检测算法都能达到较高的检测精度,YOLOv3算法较Faster RCNN算法的检测精度相对偏低,但其对体积较小的落石目标更加敏感,更具捕捉性,且检测速度更快,更能满足实际工程的需要.

迁移学习;边坡落石;深度学习;智能手机

48

TP391(计算技术、计算机技术)

国家自然科学基金项目;江西省自然科学基金重点项目

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

290-294

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn